reduction of capital - definizione. Che cos'è reduction of capital
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è reduction of capital - definizione


Reduction of capital         
STOCK VALUE DECREASE OF A COMPANY
Capital reduction; Reduction of the capital; Reduction of capital stock
Reduction of capital or capital reduction is to decrease stock of a company. During reduction of capital, sometimes the company returns a portion of the stock of a company to shareholder.
Great Reduction         
LAND REFORMS IN SECOND MILLENNIUM SWEDEN; A TAKING-BACK OF POSSESSIONS FROM THE NOBILITY BY THE CROWN
Great Reduction (Sweden); Reduction (Sweden)
In the Great Reduction of 1680, by which the ancient landed nobility lost its power base, the Swedish Crown recaptured lands earlier granted to the nobility. Reductions () in Sweden and its dominions were the return to the Crown of fiefs that had been granted to the Swedish nobility.
Dimensionality reduction         
  • A visual depiction of the resulting LDA projection for a set of 2D points.
  • A visual depiction of the resulting PCA projection for a set of 2D points.
PROCESS OF REDUCING THE NUMBER OF RANDOM VARIABLES UNDER CONSIDERATION
Dimension reduction; Dimensionality Reduction; Dimensionality reduction algorithm; Linear dimensionality reduction
Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension. Working in high-dimensional spaces can be undesirable for many reasons; raw data are often sparse as a consequence of the curse of dimensionality, and analyzing the data is usually computationally intractable (hard to control or deal with).